If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3y^2=178
We move all terms to the left:
3y^2-(178)=0
a = 3; b = 0; c = -178;
Δ = b2-4ac
Δ = 02-4·3·(-178)
Δ = 2136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2136}=\sqrt{4*534}=\sqrt{4}*\sqrt{534}=2\sqrt{534}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{534}}{2*3}=\frac{0-2\sqrt{534}}{6} =-\frac{2\sqrt{534}}{6} =-\frac{\sqrt{534}}{3} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{534}}{2*3}=\frac{0+2\sqrt{534}}{6} =\frac{2\sqrt{534}}{6} =\frac{\sqrt{534}}{3} $
| x²-24x+110=0 | | x²+14x+55=0 | | 4(2x−7)−8(5−x)=3(2x+4)−5(x+7) | | 400/8000000=x/6293750 | | 400/8000000=x/6293750 | | 45+x=25+x | | 45+x=50+2x | | 2/x=2.5 | | 0=x^2+10x-169 | | 0=x^2+10x-169 | | -8x=-3(2x-4)+3x | | 100=5g+15 | | 10+0.15h=14.50 | | 10+0.15h=14.50 | | 10+0.15h=14.50 | | 10+0.15h=14.50 | | (r-4)²-9=0 | | 100-7f=65 | | 100-7f=65 | | √x+5=4 | | 111=13x-6 | | 111=13x-6 | | 40+5x=55 | | 40+5x=55 | | H=-25h2 | | X/0.8(x+20)-4.5=0.7(5+×)-0.9× | | X/0.8(x+20)-4.5=0.7(5+×)-0.9× | | 12x−4(x−1)=2(x−2)+16 | | x/12x−4(x−1)=2(x−2)+16 | | x/0.8(x+20)−4.5=0.7(5+x)−0.9x | | 25(x)-45=250 | | 63x1=63 |